
System Engineering Challenges of Real-Time
Simulation for Mars Smartlander Entry,

Descent and Landing
Bryan J. Martin*

Je t Propulsion Laboratory, Pasadena, CA

David. A. Henriquezt
J. Bob Balaramt
Garett. A Sohlt

and
Marc. I. Pomerantzf

D S E N D S is an i n - d e v e l o p m e n t s p a c e c r a f t s i m u l a t o r for E n t r y , D e s c e n t , a n d L a n d i n g , d e -

v e l o p e d i n i t i a l l y t h r o u g h D N P f u n d i n s s t J P L a n d c u r r e n t l y a l a t e d f o r use in t h e M a r s S m a r t

L a n d e r m i s s i o n as an s n a l y i s a n d v e r i f i c a t i o n t o o l . B a s e d on t h e J P L - d e v e l o p e d Dshell s i m “ l a -

t o r . t h e n e e d t o c o n s o l i d a t e a n d e o m b i n e t o o l 8 f r o m d i s p a r a t e s o u r c e s a n d w i t h v a r y i n g d e g r e e s

o f c o m p l e t e n e s s h a s p r e s e n t e d u n i q u e c h a l l e n g e r . T h i s p a p e r d i s c u s s e s s o m e o f t h o a e c h a l l e n g e s

a n d a n d t h e i r 1 1 0 I ~ t i o n s .

INTRODUCTION
The Jet Propulsion Laboratory (JPL) is develop-

ing a high-fidelity, real-time spacecraft simulator for
Entry, Descent and Landing (EDL) on planetary and
small bodies. This simulator, DSENDS (Dynamics
Simulator for Entry, Descent and Surface landing),
is an EDL-specific extension of the JPL Darts/Dshell
multi-mission spacecraft dynamics and devices simula-
tion toolkit which is in use by missions such as Cassini,
Galileo, SIM, and Starlight. The broad scope of pos-
sible missions for this tool requires that we maintain
a high level of generality and flexibility in our system
design. The first major test of the DSENDS simulator
is in support of the Mars SmartLander mission, which
will use DSENDS in a real-time environment (Mars-
DSENDS).

The DSENDS simulator interfaces with three gen-
eral classes of tools. COTS tools such as Stethoscope,

*Senior Staff Engineer, Engineering and Science Directorate,
Avionic Systems and Technology Division, Autonomy and Con-
trol Section, Simulation and Verification Group.

t Staff Engineer, Engineering and Science Directorate,
Avionic Systems and Technology Division, Autonomy and Con-
trol Section, Simulation and Verification Group.

ZSomeOtherDesignation, Engineering and Science Direc-
torate, Avionic Systems and Technology Division, Mobility Sys-
tems Concept Development Section, SomeOtherGroup

§Member of Technical Staff, ARC0 Service Corporation
Copyright @ 2002 by the American Institute of Aeronautics and . . Astronautics, Inc. 1

daVinci, Graphviz, and Matlabs’ Simulink require
use of a stable and standardized API. JPL internal
tools such as the visualization programs Dview and
Dspace, are integrated with the Dshell environment
yet run as external processes using a coordinated,
semi-asynchronous form of IPC. Finally, instrument,
system component, and environmental models devel-
oped by disparate sources within and without JPL
each present challenges due to the need to develop a
unique interface or wrapper that takes into account
that they are typically mission components that are
under development.

Within this paper we discuss the integration and
system engineering issues for a selection of the above
elements into the DSENDS simulator.

SYSTEM ENGINEERING
Handling multiple sim configurations

Modularization of s/c models

0 Landings sites

Planet data

SPACECRAFT DYNAMICS
The multi-mission capabilities of Darts/Dshell allow

easy reconfiguration of DSENDS to simulate a wide
range of spacecraft configurations. Mass properties,
thruster sizes and thruster locations can be changed to
reflect different design concepts. DSENDS simulations

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 98-0879

B ackshell

9

f
, I Virtual link / , I \ i/ Visco-elastic

constraint forces -+

I Confluence point

Fig. 1 Confluence point dynamics

have been created based on an early '07 prototype de-
sign and the current SmartLander reference design.
Even though the current reference design is in flux,
DSENDS provides the flexibility needed to evolve with
any changes.

DYNAMIC SPACECRAFT RECONFIGURATION
One significant challenge in EDL simulation is man-

aging the transitions between the multiple phases of
EDL, which often require a structural change in the
simulation model to reflect new spacecraft configura-
tions. Heat shield separation and parachute deploy-
ment are examples of these transitions. These changes
are conceptually simple, but require automated meth-
ods to maintain the continuity and accuracy of the
end-to-end simulation. Using a state machine (see sec-
tion), DSENDS allows dynamic reconfiguration of the
spacecraft model and correctly propagates the old sys-
tem state to the new model. This ability to reconfigure
the simulation model allows DSENDS to provide vary-
ing levels of fidelity during each phase. Integration
step size can also be varied during the simulation, al-
lowing the user to choose particular phases to simulate
at high fidelity while maintaining continuity with the
rest of the simulation.

TETHER DYNAMICS
After parachute deployment, the flight train sys-

tem includes several flexible tethers. Our tests of
simulation methods for these tether lines are based
on a Pathfinder-like system. This system includes a
backshell-lander system involving three lines and a sin-
gle confluence point (see Figure 1). A similar system
is used for the backshell-parachute tether line system.

A viscc-elastic model for the individual tether line is
used. The constraint forces imposed by the individual
tethers dictate the motion of the confluence point. The
high frequency dynamics of the tether lines requires a
small integrator step size to insure stability. Although
variable step integrators are more accurate, they do
not provide any guarantee of timing. This can prove
unacceptable in a real-time environment.

Our early testing of viscc-elastic tether systems
showed similar qualitative results for both fixed and
variable step integrators. These qualitative behaviors
may be adequate for general simulation. Shown in
Figure 2 are some simulation results for a triple bridle
system.

Simulation speed of the variable step techniques is
highly dependent upon the state of the tethers (see
Figure 3).

Variable step integrators reduce the step size when
a tether transitions between slack and taut (between
t = 1 and t = 5 in test plot). This provides increased
accuracy at the cost of simulation speed, making the
variable step integrators slower than a fixed step near
these transitions. However, as the system settles and
the tether lines remain taut, a variable step integrator
can increase the step size and achieve faster perfor-
mance compared to a fixed step method (t i 6 in test

The spring-damper tether models have been incor-
porated into the DSENDS simulation. DSENDS cur-
rently uses a fixed step integrator and requires a re-
duction in step size when using the high fidelity tether
models.

plot).

k =3e+5. E I Xa =I(' ' ' ' ' ' ' '

40

P
F

20

10

0
0 1 2 3 4 5 5 7 8 9

time

Fig. 2
schemes.

Tracking results for different integration

2 OF 12

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 98-0879

never intended to operate in a real-time simulation
environment. Although these codes tend to be mono-
lithic, it is possible to isolate the functions in these
validated and trusted codes that are used to compute
aerodynamic forces and moments. These functions
could then be imported into the DSENDS simulator,
so long as they do not violate the real-time require-
ment and can be hosted as a model in the DSENDS
aerodynamic modeling architecture.

Consequently, DSENDS had to architect the manner
in which it models aerodynamics so that it could 1) op-
erate in a real-time environment and 2) inherit legacy
or validated aerodynamics models. Real-time consid-
erations drove the aerodynamics modeling architecture
to restrict the computational overhead of the models
and to allow for scalable fidelity. In order to meet amulsltan 1ew

these requirements, DSENDS aerodynamics model-
ing architecture decomposed the aerodynamics into
three separate models: 1) Aerodynamics Model (en-

Fig. 3
schemes.

Integration effort for different integration

capsulates the aerodynamic coefficients for the given
aerodynamic system) , 2) Atmospheric Model (encap-
sulates the ambient atmospheric conditions) and 3)
Wind Model (any local wind velocity not captured in
the Atmospheric Model. Common interfaces and func-
tional requirements were made for these three groups
of models so that they would correctly interoperate.
The fidelity and computational overhead of an aero-
dynamic model would then depend on which set of
models were instantiated for a given DSENDS EDL
simulation. Also, different kinds of legacy codes could
be encapsulated one of these three types of models.

Currently, DSENDS has the following catalog of
models.

Aerodynamics Models
Fig. 4 Connectivity between aerodynamic models.

- Linearized, Axisymmetric Aerodynamics
- Interpolated, Axisymmetric Aerodynamics

AERODYNAMIC MODELING
Aerodynamic forces and moments are fundamental

for an Entry, Descent and Landing simulator. During,
EDL, an aerodynamic system will experience aerody-
namic forces as it traverses from the thin outer atmo-
sphere (governed by free molecular flows) to the atmo-
sphere at the landing site (governed by continuum fluid
flows). Also, the aerodynamic system decelerates from
hypersonic velocities (in which molecular dissociation

on the order of minutes. Thus, the challenge for the
DSENDS EDL simulator is how to accommodate such
disparate flow and velocity regimes in a real-time en-
vironment.

Another challenge has been how to leverage existing
aerodynamic models from legacy codes used for trajec-
tory simulations (e.g. POST). These legacy codes are
well suited for Monte Carlo mission analyses but were

- Viking-based, Hypersonic Aerodynamics de-
veloped at LaRC (includes Mars GRAM
3.37)

Atmospheric Models

- Fitted Reference Martian Atmosphere

dominates the boundary layer) to subsonic velocities - MWS GRAM

Wind Models

- Under Development

The Viking-based hypersonic model listed above was
intended for use in extremely high-fidelity atmospheric
entry simulations, and was not optimized for use in a
real-time environment, although we expected it to be

3 OF 12

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS P A P E R 98-0879

t *=- A""

Fig. 5 Celestial body frames.

efficiently designed and implemented. Our integration
and testing efforts therefore concentrated on efficient
use of the library as well as validation of our results.

Our preliminary tests incorporate the LaRC hyper-
sonic model into Mars-DSENDS using and axis-
symmetric body model. The flight path and time-
dependent dynamic quantities (acceleration, dynamic
pressure, etc) were compared against the preexisting
low fidelity models previously used in DSENDS . These
tests have been performed on hardware running a non-
real-time OS (Solaris), and so have been used only to
measure theoretical or relative performance. The low-
fidelity model showed qualitatively similar results but
did not have the frequency content of the LaRC model.

The following sections discuss the requirements and
implementation of the DSENDS aerodynamics model-
ing architecture.

AERODYNAMICS MODELING

MODELS
Atmospheric models are either simple mathematic

model or a database of atmospheric properties (e.g.
density, pressure, temperature, wind velocity, etc.)
that vary with time. Spatial-temporal variations in
the local atmospheric properties are due to the un-
even, radiative heating of the planet and influence of
the planetary terrain and consequently vary with lo-
cal time (i.e. planetary attitude), solar longitude (Le.
season) and with planetary latitude and longitude.

Although terrain information may be convolved into
an atmospheric model, no atmospheric model shall be
expected to produce terrain elevation. Synchroniza-
tion between atmosphere and terrain models shall be
done external to the atmospheric model and is ex-
pected to be solely through relative position of the
aerodynamic system (i.e. latitude, longitude and
height) with respect to a planet-centered, rotating
frame (Le. PCR).

Since atmospheric models are expected to be relative
to the planetary surface, i.e. vary with latitude, lon-

SYSTEM ENGINEERING ISSUES RELATED TO

REQUIREMENTS FOR ATMOSPHERIC

gitude and height above the surface, each atmospheric
model must have access to a function or object to con-
vert its planet-centered, rotating frame (PCR) data
into a planet-centered, inertial frame (PCI), which
makes the data more compatible with the rest of the
DSENDS EDL simulation.

As mentioned above, atmospheric models are ex-
pected to have data that varies with solar longitude
and local time (i.e. planetary attitude and rate) or
some extraterrestrial equivalent of GMT. However, at-
mospheric models shall not be expected to maintain
such planetary attitude and rate. Therefore, plane-
tary attitude and rate must come from some external
object that maintains such states (e g a planetary
attitude dynamics object or SPICE object).

Atmospheric models may produce wind velocities as
a function of the relative position of the aerodynamic
system above the planetary surface. As mentioned
earlier, the atmospheric model shall have access to a
function or object to transform the wind velocities into
a standard PCI frame. The atmospheric model must
also correctly add the planetary rotation to wind ve-
locity so that the inertial wind velocity represents the
total kinetic energy of the flow field encountered by
the aerodynamic system.

Although there are classes of atmospheric models
that can be modeled by a set of ODE, such models
will not be used in DSENDS . DSENDS has a require-
ment to be a real-time simulator and using ODEbased
atmospheric models can easily violate that require-
ment. Therefore, ODEbased atmospheric models can-
not be used at runtime within DSENDS . However, the
spatial-temporal data produced by ODE-based atmo-
spheric models could be an input to some atmospheric
model that interpolates its spatial-temporal data. In
other words, DSENDS atmospheric models shall only
have a functional dependence on its input, regardless
of whether the underlying atmospheric model uses in-
terpolated data or an algebraic equation.

REQUIREMENTS FOR WIND MODELS
Simple wind models are those that model the di-

urnal and semi-diurnal cycles in the wind (due to
diurnal solar radiative heating) as the sum of sinu-
soidal functions in time. High fidelity wind-models in
the atmospheric sciences use a set of spatial-temporal

partial differential equations that are entered into an
estimation process (i.e. Kalman Filter) where atmo-
spheric and terrain measurements are used to refine
the results so that a realistic wind field is produced
with spatial-temporal variations. Many of these ef-
fects are available in certain atmospheric models (i.e.
Mars GRAM) with varying degrees of fidelity. It is
for this reason that DSENDS wind models shall only

4 OF 12

AMERICAN INSTITUTE OF AERONAUTICS A N D ASTRONAUTICS P A P E R 98-0879

Semi-
i diurnal
I flowneara
i mountain

...

i/ %

i'"'"""

......................
y: . - \I-

Fig. 6 Semi-diurnal flow near a mountain.

compute local perturbing wind velocities for a spec-
ified ground-fixed atmospheric volume (i.e. latitude,
longitude and height ranges). This requirement facil-
itates correlation between a wind model and a high
fidelity atmospheric model without the same wind ef-
fects being doubly applied or erroneously cancelled.
Furthermore, DSENDS wind models shall maintain
parameters that define the PCR-fixed region of in-
fluence to which the wind model is valid. The wind
model shall also provide a public function or object to
return these parameters so that the perturbed wind
velocity can be correlated with the planetary terrain
for the same PCR-fixed volume. These parameters
can either be hard-coded into the model or set by the
user. The wind model shall have access to a func-
tion or object that converts its PCR velocity vectors
into the PCI frame, so that its output is compatible
with the DSENDS environment. Since only perturba-
tions are computed in DSENDS wind models, a wind
model shall not be required for running a DSENDS
EDL simulation. Spatial-temporal wind models have
a set of ODE's that must be solve for the entire wind
field throughout its PCR extent at various grid points.
The perturbed local wind velocity is then queried for
a specific location. If the specified location was be-
tween the model's grid points, the model interpolates
the wind velocity from neighboring grid points. Such
a model could be a large computational burden for
DSENDS and may violate the real-time requirement
for the DSENDS simulator. However, since such mod-
els are desired for modeling localized wind effects near
mountains, craters or valleys, DSENDS wind models
shall have a bounded region of influence such that its
computation overhead does not violate the DSENDS
real-time constraints. In addition, DSENDS wind
models shall have access to functions or objects that
allow it to maintain continuous states and functions
or objects that allow it interpolate between grid point
solutions.

The subsequent discussion will focus on the require-

5 OF

ments for implementing a simple spatial wind model,
which should not preclude the implementation of more
complex wind models. A perturbing wind model can
be developed using a PSD that only varies with al-
titude and does not require solving a set of ODE's.
After the coefficients to the discrete Fourier series are
computed, the wind model could take a PCI position,
convert it into an altitude and compute the perturb-
ing wind at that altitude. Additionally, truncating the
Fourier series easily bounds the computational over-
head of this wind model. Many of the variable used
to compute the Fourier series (e.g. the fundamental
frequency, number of harmonics, etc.) can be model
parameters, thereby making such a wind model well
suited for generic application. Consequently, DSENDS
wind models shall use model parameters to increase
the model's potential applicability in DSENDS EDL
simulations.

REQUIREMENTS FOR AERODYNAMICS
MODELS

Aerodynamic are modeled as a set of dimensionless
coefficients that are relative to a body-fixed refer-
ence frame on an aerodynamic system. The reference
frame defines a coordinate system in which forces and
moments are applied. This reference frame is very
likely to be different from the mechanical reference
frame. Therefore, aerodynamics models shall main-
tain a transform that allows aerodynamic forces to be
mapped from the aerodynamic reference frame into the
mechanical reference frame of the aerodynamic sys-
tem.

The aerodynamic reference frame shall have the +x
direction is along the axis of symmetry and is nomi-
nally antiparallel to the freestream velocity when the
total angle of attack is zero (i.e. +x points into the
"wind"). The +y direction shall be defined as the
"pitching axis" and shall point such that a positive ro-
tation (i.e. counterclockwise) about +y shall produce
a positive angle of attack. +z shall be the cross prod-
uct of +x and +y. This definition of the aerodynamic
reference frame is general and can be applied to any
aerodynamic system.

So far, the discussion on modeling requirements for
DSENDS aerodynamics models has been general. The
following discussion will focus on the requirements
needed for modeling axisymmetric aerodynamic sys-
tems. Axisymmetric aerodynamics models are a class
of aerodynamics models that are not sensitive to an
angular displacement and angular rate about the axis
of symmetry. A seemingly limiting choice of aero-
dynamic systems, axisymmetric aerodynamics models
can be used to model most EDL aerodynamic subsys-
tems (eg. entry vehicle, parachute, etc.). Therefore,

12

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS P A P E R 98-0879

Y0R

Fig. 7 Aerodynamic body reference frames

DSENDS development focused on developing these
models, but the interfaces and design of the DSENDS
atmospheric and wind models will not preclude future
lifting body aerodynamics models.

Although aerodynamic systems experience positive
and negative total angles of attack, most aerodynamic
coefficients databases for axisymmetric vehicles tend
to only list coefficients for positive angle of attack.
This convention assumes that the aerodynamic forces
and moments are applied in a frame such that the total
angle of attack is positive. As a result, axisymmetric
aerodynamics model shall determine its aerodynamic
reference frame a t runtime. The frame shall maintain
+x along the axis of symmetry but +y shall be chosen
such that the total angle of attack the angle is pos-
itive; +y and +z directions will vary as the incident
flow field. The transform maintained by the axisym-
metric aerodynamics model shall be used to define the
+x with respect to the mechanical reference frame.

Lastly, the axisymmetric aerodynamics model shall
have access to functions or objects that allow it to as-
certain the 6 DOF inertial state of the aerodynamic
system. Furthermore, the axisymmetric aerodynamics
model shall have access to functions or objects that
allow it convert its 6 DOF state knowledge into to-
tal angle of attack within the aerodynamics reference
frame.

SOFTWARE ENGINEERING FOR ATMOSPHERIC MODELS
INTERFACES

In the following interface description, assume that
the base data type for variables and arrays is a dou-
ble precision floating point type (i.e. double) unless
otherwise specified.

The interfaces for DSENDS atmospheric models, as
derived from its requirements, must have the following
inputs and outputs. Atmospheric models shall have as
its input: 1) a three element array for the PCI position

Fig. 8 Atmospheric model interfaces

of the aerodynamic system, 2) a three element array
for the PCI velocity vector of the aerodynamic system,
3) solar longitude for the planet, 5) a four element ar-
ray for the quaternion that defines the transformation
from the PCI frame to the PCR frame and 6) a three
element array for the rotation rate of the PCR frame
with respect to the PCI frame. And the output of a
DSENDS atmospheric model shall be: 1) an unsigned
integer that represents the address of the atmospheric
model (i.e. a "this" pointer), 2) a local density, 3)
a local pressure, 4) a local temperature, 5) the local
specific heat ratio (i.e. ?) and 6) a three element ar-
ray for the local wind velocity in the PCI frame. The
justification for a "this" pointer output is made in the
following section.

IMPLEMENTATION
DSENDS defines a C++ model class called flow

model that only has a functional dependence on its
input and has no continuous states (i.e. cannot define
a derivative). The flow model class was chosen as the
base class for DSENDS atmospheric models in order
implement atmospheric models that have a functional
dependence on its input.

The DSENDS atmospheric models will communi-
cate with the DSENDS aerodynamics models via in-
herited class types called flowIns and flowouts. These
types are defined in the DSENDS model base class,
from which the DSENDS flow model class is derived,
and allow DSENDS models to read and write data
to signal buffers. Two DSENDS models can commu-
nicate with each other if they are connected to the
same set of signal buffers. Therefore, the DSENDS
atmospheric model was implemented to read the PCI
position and velocity vectors, the quaternion from PCI
to PCR and the angular rate of the PCR frame from
the following similarly named flowIns object:

1. flowIns.positionPCI[3]

2. flowIns.velocityPCI[3]

3. flowIns.quatPCItoPCR[4]

4. flowIns.ratesPCR[3]

6 OF 12

AMERICAN INSTITUTE OF AERONAUTICS A N D ASTRONAUTICS PAPER 98-0879

And the atmospheric model was implemented to
write its address, the local density, the local temper-
ature, the local pressure, the local specific heat ratio
and the local wind velocity in the PCI frame to the
following similarly named AowOuts object:

1.

2.

3.

4.

5.

6.

flowOuts.atmObject

flowOuts.atmDensity

flowOuts.atmTemp

flow0uts.atmPressure

flowOuts.atmHeatRatio

flowOut~.atmWindPCI[3]

The DSENDS atmospheric model outputs its ”this”
pointer in order to associate it with a DSENDS aerody-
namics model. The aerodynamics model is the forcing
function on an aerodynamic system and in order for it
to compute the proper forces and moments to apply,
it must know the local atmospheric properties for the
current inertial state of the aerodynamic system. As
will be further elucidated below, the DSENDS atmo-
spheric model will execute by a direct command from
the DSENDS aerodynamics model (Le. via a pub-
lic member function of the atmospheric model class).
Upon receiving the execution command, it will read
its input from the flowIns object and write the local
atmospheric properties to its flowouts object. Hence,
the aerodynamics model shall always have the correct
local atmospheric properties, so long as the aerody-
namics model and atmospheric model are connect to
the same set of signal buffers and the aerodynamics
model writes its PCI position and velocity prior to ex-
ecuting the atmospheric model.

SOFTWARE ENGINEERING FOR WIND MODELS
INTERFACES

In the following interface description, assume that
the base data type for variables and arrays is a dou-
ble precision floating point type (i.e. double) unless
otherwise specified.

As derived from its requirements, DSENDS wind
models shall have the following interfaces for its inputs
and outputs. The inputs of a wind model shall be:
1) a three element array for the PCI position of the
aerodynamic system, 2) a three element array for the
PCI velocity vector of the aerodynamic system, 3) a
four element array for the quaternion that defines the
transformation from the PCI frame to the PCR frame,
4) a three element array for the rotation rate of the
PCR frame with respect to the PCI frame and 5) a
three element array for the local wind velocity in the

. I I

Fig. 9 Wind model interfaces

PCI frame (i.e. global atmospheric circulation). The
wind model outputs shall be: 1) an unsigned integer
that represents the address of the wind model (i.e. a
”this” pointer) and 2) a three element array for the
perturbed local wind velocity in the PCI frame. The
justification for a ”this” pointer output is made in the
following section.

IMPLEMENTATION
Unlike the atmospheric model, the DSENDS wind

models were implemented using the DSENDS base
class that has class types that allow the model to main-
tain continuous states. The DSENDS sensor model
base class was selected because it was assumed that
the variations in the local perturbing wind velocity
varies in time scales that allow it to be loosely cou-
pled with the aerodynamic forces and moments (i.e.
minutes or hours). Consequently, there is no need to
solve simultaneously solve a wind model ODE and the
equations of motion of the aerodynamic system.

I .

Fig. 10 Wind model interfaces

The DSENDS wind models will communicate with
the DSENDS aerodynamics models via inherited class
types called flowIns and flowouts (see Software En-
gineering for Atmospheric Models section for a de-
scription of these types and their use). The DSENDS
wind model was implemented to read the PCI posi-
tion and velocity vectors, the quaternion from PCI to

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS P A P E R 98-0879

. PCR, the angular rate of the PCR frame and the at-
mospheric wind velocity from the following similarly
named flowIns object:

0 flowIns.positionPCI[3]

0 flowIns.velocityPCI[3]

0 flowIn~.quatPCItoPCR[4]

flowIns.ratesPCR[3]

0 flowIns. atmWindP CI[3]

And the wind model was implemented to write its
address, the local perturbed wind velocity in the PCI
frame to the following similarly named flowouts ob-
ject:

0 flowOuts.windObject

0 flowOut~.perturbWindPCI[3]

The DSENDS wind model outputs its "this" pointer
in order to associate it with a DSENDS aerodynamics
model. The aerodynamics model is the forcing func-
tion on an aerodynamic system and it must have the
local wind velocity vector for the current inertial state
of the aerodynamic system in order to correctly com-
pute the freestream velocity vector and therefore the
correct angle of attack. If a DSENDS wind model
is connected to a DSENDS aerodynamics model, the
DSENDS aerodynamics model will execute the wind
model via a public member function of the wind model
class. Upon receiving the execution command, the
wind model will read its input from the flowIns ob-
ject and write the local perturbed wind velocity to
its flowouts object. The aerodynamics model must
execute the atmospheric model prior to executing the
wind model. If no wind model is connected (i.e. NULL
address or address equals the atmospheric model ad-
dress) the aerodynamics model will skip execution of
the wind model and will simply read the wind velocity
on its flowIns object.

SOFTWARE ENGINEERING FOR AERODYNAMIC MODELS
INTERFACES

In the following interface description, assume that
the base data type for variables and arrays is a dou-
ble precision floating point type (Le. double) unless
otherwise specified.

As required, DSENDS aerodynamics models shall
have the following input and output interfaces. The in-
puts of a aerodynamics model shall be: 1) an unsigned
integer that represents the address of the atmospheric
model (i.e. a "this" pointer), 2) a local density, 3) a
local pressure, 4) a local temperature, 5) an unsigned

Fig. 11 Aerodynamic model interfaces

integer that represents the address of the wind model
(i.e. a "this" pointer), 6) a three element array for
the local wind velocity in the PCI frame and 7) the
6 DOF inertial state of the aerodynamic system. The
aerodynamics model outputs shall be: 1) a three el-
ement array for the PCI position of the aerodynamic
system, 2) a three element array for the PCI velocity
vector of the aerodynamic system and 3) the aerody-
namic force and moment applied in the mechanical
reference frame. The justification for the use of "this"
pointers output is made in the following section.

IMPLEMENTATION
The DSENDS aerodynamics models were imple-

mented using the DSENDS actuator model base class,
which allows the model to apply forces and moments
on the DSENDS dynamics model.

The DSENDS aerodynamics models will commu-
nicate with the DSENDS atmospheric models and
DSENDS wind models via inherited class types called
flowIns and flowouts (see Software Engineering for At-
mospheric Models section for a description of these
types and their use). The DSENDS aerodynamics
model was implemented to read the address of the at-
mospheric model, the address of the wind model, the
local density, the local temperature, the local pressure,
the local specific heat ratio and the local wind velocity
in the PCI frame from the following similarly named
flowIns object:

0 flowIns.atmObject

0 flowIns.windObject

0 flowIns.atmDensity

0 flowIns.atmTemp

0 flowIns.atmPressure

0 flowIns. atmHeat Ratio

0 flowIns.localWindPCI[3]

8 OF 12

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS P A P E R 98-0879

And the aerodynamics model was implemented to
write its PCI position and velocity vectors to the fol-
lowing similarly named flowouts object:

0 flowOuts.positionPCI[3]

0 flowOuts.velocityPCI[3]

The DSENDS aerodynamics model uses the ad-
dresses of the DSENDS atmospheric model and the ad-
dress of the DSENDS wind model in order to associate
and communicate with them. After the aerodynamics
model gets the 6 DOF inertial state of the aerodynamic
system from the DSENDS dynamics model via a func-
tion call, it extracts its PCI position and velocity and
writes it to its flowout type, thereby providing inputs
to the atmospheric and wind models. The aerodynam-
ics model then proceeds to check its flowIns type for
valid atmospheric and wind model addresses. If the
address of the DSENDS wind model is null, the aero-
dynamics model skips execution of the wind model.
However, if the address of the atmospheric model is
null, the aerodynamic model will print a critical error
message and force the DSENDS simulator to exit.

After verifying that it is connected to at least a valid
atmospheric model, the aerodynamics model executes
the atmospheric model and then the wind model (if
valid) using public member functions of the models.
The aerodynamics model then reads the ambient at-
mospheric conditions and wind velocity from flowIns
type. The aerodynamics model then takes its inertial
velocity and wind velocity to compute the freestream
velocity and angles of attack. And then it uses the
ambient atmospheric conditions and freestream veloc-
ity to compute the Mach number of the aerodynamic
system. If the aerodynamics model uses an aero-
dynamic coefficient database, then the aerodynamics
model must use some interpolation functions to deter-
mine the aerodynamic coefficients for the given aero-
dynamic system state. If the aerodynamic model uses
some parametric aerodynamic coefficient model, the
aerodynamic model then queries the coefficient model
by some function call to get the salient aerodynamic
coefficients. However the aerodynamics model accesses
its aerodynamic coefficients, it takes the coefficients for
the given angles of attack and Mach number and then
computes the aerodynamic forces and moments to ap-
ply to the aerodynamic system.

TERRAIN MODELING
Terrain models are used by DSENDS for a variety

of purposes. These include monitoring the height of
the spacecraft over the terrain, determining instru-
ment field-of-views, generating sensor responses for

Imaging, Lidar and Phased-Array Radar terrain sens-
ing devices, evaluating the spacecraft kinematic and
dynamic response during touchdown, and overall visu-
alization of the simulation. The extent and resolution
of the terrain needed by DSENDS varies during the
descent profile. At entry, a large swath of terrain is re-
quired at coarse resolution. As the spacecraft descends
narrower extents of terrain at higher resolution is re-
quired. Furthermore, the specific locations at which
the terrain is required also varies as a result of un-
certainty in the spacecraft trajectory and pointing.
For example, during hypersonic entry at Mars an un-
guided spacecraft has an a trajectory uncertainty of
typical1 over a 100 km. Similarly, during descent on a
parachute, the pointing of the spacecraft can vary by
many 10’s of degrees as the parachute interacts with
the descent induced and atmospheric wind. A typical
scenario of terrain usage is shown in Figure 1.

The specific terrain models supported in DSENDS
are Digital Elevation Maps (DEMS). This is essentially
2.5 D data and suffices for most EDL simulation needs.
The sources of the DEM data are varied. At one level
is planet-wide data that may have been obtained by
remote sensing from orbit. Such topographic data is
available, for example, for Mars using the MOLA data
set or for Venus using the Magellan data set. At an-
other level is purely synthetic data. Such data, using
fractal generation of landscape features such as craters
and rocks overlayed on a base topography, is useful for
performing system tests where real data is not avail-
able. Such synthetic data is available from a variety of
sources12.3 Finally, we have data that is intermediate
between the two, where low-resolution real terrain is
synthetically enhanced to high-resolution. Such data
is available for certain specific landing sites of interest.
In addition to DEM’s we must also mention data rel-
evant to defining planetary geoid data. Geoid height
is required to support atmospheric models. DSENDS
supports both a DEM type representation of geoid
data as well as those based upon a spherical harmonics
expansion (cite Geoid paper).

A brute-force approach to pre-load a DEM of an
entire region at high-resolution is not feasible (e.g.a
swath of terrain 200 km by 100 km at 10 cm reso-
lution is well over 2 * lo1’ pixels). Instead a phased
approach is required, where terrain patches are dy-
namically loaded into the simulation based upon the
needs of the particular phase of the simulation. The
phasing requires a number of components:

dynamic generation of terrain patches at appro-
priate resolutions

0 Fetching of generated terrain for use by the sim-
ulation

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS P A P E R 98-0879

Loading into special memory to facilitate real-
time device response generation. Such loading
and unloading must be transparent to the hard
real-time process implementing the device sim-
ulation. In DSENDS this is achieved by means
of utilizing shared-memory segments between the
real-time process and a another thread responsi-
ble for terrain memory management.

Look-ahead prediction of required terrain seg-
ments to allow

Generation, fetching and loading requests to be
queued and terrain to be available in a timely
manner

the EDL simulator, and upload to the EDL simula-
tor's memory. Each of processes identified has in-built
delays that make timely access difficult. Fast genera-
tion of terrain using multiple fast processors, timely
transport of data using fast network hardware and
protocols, and real-time buffer and shared-memory
segment management within the simulator, are all in-
gredients in achieving timely terrain access. Moreover,
as the segments needed by the application change, suc-
cessive terrain segments must be generated as needed,
uploaded to the simulator, and placed into memory in
a timely and seamless fashion.

The Instrument Terrain Server (ITS) in the EDL
simulator provides these functions to the various appli-
cations in the simulator. It incorporates the following -

DSENDS currently implements an Instrument Ter-
rain architecture to support the needs identified above.
The architecture is shown in Figure 2.

functional ekments:

The ITS has a number of real-time shared mem-
ory buffers which contain overlapping terrain seg-

TERRAIN INSTRUMENT SERVER
Terrain products are required within the EDL sim-

dation to support a number of applications such in-
strument simulations, data monitoring modules, and

ments. As the application requests terrain in the
overlapping areas, buffers are switched in real-
time to allow the application to access terrain in
the new segment in a seamless fashion.

3-D visualization of the simulation. Examples of these
are respectively, a terrain scanning Lidar instrument
simulation, a monitor of the spacecraft height over the
ground, and a 3-D view of the spacecraft approach to
the landing site. The location, extent and spatial reso-
lution of the terrain segments required to support these
applications varies and is a function of the boresight,
field-of-view, and the fidelity desired. For example, a
Lidar with a steering mirror could require terrain any-
where within the field-of-regard provided by the mirror
at a resolution that is a function of the instantaneous
field-of-view (IFOV) of each pixel in the Lidar detec-
tor. 4 monitor of spacecraft altitude would require
a small terrain segment located vertically below the
spacecraft. A mouse-driven viewpoint generator for 3-
D visualization would require terrain anywhere in the
scene as the simulation user moves the view-point.

In all these cases terrain must be provided in a
timely manner to the EDL simulator. This is es-
pecially important during real-time operations where
instrument responses must be generated in synchro-
nization with a real-time clock with no possibility of
cycle-slips and consequent data loss. The option of
having all of the terrain resident in memory for im-
mediate access by the requesting EDL application is
not feasible because of the sheer size of the data set
required. For example, a lOkm X 10 km site at 10 cm
resolution would required storage of 1010 pixels ! In-
stead, a process of terrain generation (or enhancement
in the case of synthetically augmented natural terrain)
must be combined with terrain segment transport to

0 The ITS has a predictive model of terrain usage
(called an Oracle) that allows it to predict the ex-
tent , resolution and extent of terrain segments
required by the application. These predictive
models are usually based upon a nominal EDL
scenario and the current location and velocity of
the ground "footprint" of the instrument/viewer
field-of-view.

0 The ITS uses the predictions from the Oracle,
knowledge of terrain generation times, data trans-
port times, and buffer sizes to sequence the gen-
eration, transport and upload of appropriately
overlapping segments of terrain into the EDL sim-
ulator. The ITS manages the use (and reuse) of
the real-time buffers, the extent of overlap, and
provides a level of cache management (e.g. keep
adjacent terrain segments in memory in case they
are needed) to relieve the simulator from frequent
interactions with the terrain generation/transport
process. Note that terrain generation can take
many seconds, transport is usually a fraction of a
second, and buffer managementlswapping is done
at simulation rates e.g 50 ms.

In addition the ITS provides backup terrain (with
lower resolution and larger spatial extent) in case
the generation/transport process fails to achieve
the times predicted by its model, or if the Oracle
prediction of anticipated application terrain re-
quest turn out to be wrong (e.g. if an unexpected

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS P A P E R 98-0879

spacecraft motion causes the Lidar steering mir-
ror to hit a hard-stop and thereby cause the Lidar
to suddenly be viewing a ground area far removed
from the normal scenario).

A prototype version of the ITS is operational in-
corporating a Terrain software object, shared memory
buffers that allow seamless ITS and application terrain
buffer access, and a preliminary version of the Oracle
(implement in Tcl). The ITS is being used to support a
single instrument simulation application at this point
(the Lidar simulation). Planned work will allow the
ITS to support multiple EDL applications and refine
the Oracle’s predictive capabilities.

AUTOMATION
Maintaining multiple, independent or interdepen-

dent states of various spacecraft components can be a
daunting task, especially if the mission design is either
in flux or not yet complete. An automated method
which will simplify and partition the various control
and data gathering functions involved with different
components and mission phases is required.

The design of the DSENDS State Machine develop-
ment was driven by the need to simplify dealing with
different spacecraft stages as they separate, perform
actions, or pass through different dynamic regimes.
Since multiple, separate, spacecraft models can be ac-
tive simultaneously, the state machine must maintain
the state of each spacecraft or spacecraft component
independently, and manage transitions between them.

Our state machine was designed based on providing
a subset of common capabilities in existing commercial
products providing similar functionality. The primary
abilities desired were

Automatic execution of user-functions during
state execution and state transitions

User-provided functions for testing of state tran-
sitions

Multiple, simultaneous state capability

Ease of definition and integration with DSENDS

In addition, the GraphViz graph visualization pack-
age was used to provide automatic display of the con-
nectivity of the state machine, as well as to show the
current active states in real time. Figure 12 shows an
subset of the state machine driving the demonstration
DSENDS simulation, showing names of the states and
transition test functions, special functions like initial-
ization (diamond) and termination of a state (rectan-
gle), as well as the currently active states (green).

i True

I HtShldSepChk 1 HtShldSepChk

1 I HS*mpactChk
I

I PDAltChk
f

Fig. 12 State Machine Visualization

DSENDS batch processing capabilities are centered
around performing automatic data collection for re-
gression testing, trade-space analysis, and automated
testing. The batch processor can parallelize execution
of cases over a heterogeneous collection of intercon-
nected processors, resulting in fast execution and data
collection limited only by the number of processors
avail able.

The Batch Manager does for data collection what
the DSENDS State Machine does for the simulation:
it streamlines and simplifies the process of running
simulations for the purpose of data collection and anal-
ysis, and of generating answers to what-if questions.
The batch manager provides a simple text-based in-
terface that defines initial simulation states that are
to be varied, like mass of spacecraft components, fule
on board, entry angle, or spin rate. Then one defines
the desired results to extract, which can range from
fuel consumption, landing location, or landing error,
to total horizontal delta-V. Finally, a list of available

11 OF 12

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS P A P E R 98-0879

Fig. 13 Sample Terrain

CONCLUDING REMARKS
REFERENCES

‘Gaskell, R. W., Collier, J . B., Hussman, L. E., and Chien,
R. L., “Synthetic Environments for Simulated Missions,” IEEE
Aerspace Conference Proceedings, Big Sky, Montana, March
2001.

2Gaskell, R., Collier, J., Husman, L. E., and Chen, R. L.,
“Synthetic Terrain for Simulated Missions developed in a col-
laboration between Parallel Applications Technologies Group
and Optical Navigation.” N.4SA Science Information Systems
Newsletter, , No. 60, July 2001.

3Lee, M., Weidner, R., and Lu, W., “Design-based Mission
Operation,” XEEE Aerospace Conference, BigSky, Montana,
March 2000.

Fig. 14 Batch Manager Output Analysis

resources on which to run the simulations is provided.
The input and output categories both use user-defined
readable names to identify the cases to run and the
output data.

The Batch Manager executes one simulation on each
computer, then monitors the simulations and collects
data as each completes. Once a resource is free, the
next available case is run on it. This continues until all
cases have been run and all data extracted, then the
batch manager shuts down. Data is saved to an output
file along the way, in case the process is interrupted.

An example of the output is show in Figure 14. In
this sample, a 1 by 2 km cratered area was gridded
with desired landing sites (green plus). A detailed
spacecraft model was used that included a guided pow-
ered landing capability, with some hazard avoidance.
A digital elevation map from the JPL MIPL labora-
tory was used that corresponded to the imagery. The
output picture combines fuel consumption contours
(white lines) and deflection maneuvers (cyan lines).
The output data also indicated which sites were infea-
sible (red circles).

AMERICAN INSTITUTE OF AERONAUTICS A N D ASTRONAUTICS PAPER 98-0879

